Rate Analysis of Inexact Dual First Order Methods: Application to Distributed Mpc for Network Systems
نویسندگان
چکیده
In this paper we propose and analyze two dual methods based on inexact gradient information and averaging that generate approximate primal solutions for smooth convex optimization problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first order methods based on approximate gradients and we prove sublinear rate of convergence for these methods. In particular, we provide, for the first time, estimates on the primal feasibility violation and primal and dual suboptimality of the generated approximate primal and dual solutions. Moreover, we solve approximately the inner problems with a parallel coordinate descent algorithm and we show that it has linear convergence rate. In our analysis we rely on the Lipschitz property of the dual function and inexact dual gradients. Further, we apply these methods to distributed model predictive control for network systems. By tightening the complicating constraints we are also able to ensure the primal feasibility of the approximate solutions generated by the proposed algorithms. We obtain a distributed control strategy that has the following features: state and input constraints are satisfied, stability of the plant is guaranteed, whilst the number of iterations for the suboptimal solution can be precisely determined.
منابع مشابه
Computational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC
We study the computational complexity certification of inexact gradient augmented Lagrangian methods for solving convex optimization problems with complicated constraints. We solve the augmented Lagrangian dual problem that arises from the relaxation of complicating constraints with gradient and fast gradient methods based on inexact first order information. Moreover, since the exact solution o...
متن کاملDistributed Economic Model Predictive Control under inexact minimization with application to Power Systems Master Thesis
This thesis investigates distributed economic model predictive control (DEMPC) for linear coupled systems under inexact distributed minimization. The theoretical results are applied to solve the real time economic dispatch problem for distributed power systems. The goal is to provide a comprehensive framework for DEMPC with iterative dual algorithms, starting with offline computations, going th...
متن کاملA Distributed Newton Method for Network Utility Maximization-I: Algorithm
Most existing works use dual decomposition and first-order methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This paper develops an alternative distributed Newtontype fast converging algorithm for solving NUM problems. By using novel matrix splitting techniques, both primal and dual updates for the Newton...
متن کاملDesigning a novel structure of explicit model predictive control with application in a buck converter system
This paper proposes a novel structure of model predictive control algorithm for piecewise affine systems as a particular class of hybrid systems. Due to the time consuming and computational complexity of online optimization problem in MPC algorithm, the explicit form of MPC which is called Explicit MPC (EMPC) is applied in order to control of buck converter. Since the EMPC solves the optimizati...
متن کاملComplexity of an Inexact Augmented Lagrangian Method: Application to Constrained MPC
We propose in this paper an inexact dual gradient algorithm based on augmented Lagrangian theory and inexact information for the values of dual function and its gradient. We study the computational complexity certification of the proposed method and we provide estimates on primal and dual suboptimality and also on primal infeasibility. We also discuss implementation aspects of the proposed algo...
متن کامل